Secondary Education Curriculum

2076

Physics

Grades: 11 and 12Subject code: Phy. 101 (Grade 11), Phy. 102 (Grade 12)Credit hrs: 5Working hrs: 160

1. Introduction

This curriculum presumes that the students joining grade 11 and 12 science stream come with diverse aspirations, some may continue to higher level studies in specific areas of science, others may join technical and vocational areas or even other streams. The curriculum is designed to provide students with general understanding of the fundamental scientific laws and principles that govern the scientific phenomena in the world. It focuses to develop scientific knowledge, skill competences and attitudes required at secondary level (grade 11-12) irrespective of what they do beyond this level, as envisioned by national goals. Understanding of scientific concepts and their application, in day to day context as well as the process of obtaining new knowledge through holistic approach of learning in the spirit of national qualification framework is emphasized in the curriculum.

In particular, this curriculum aims to provide sufficient knowledge and understanding of science for all learners to become confident citizens in the technological world. It helps the students to recognize the usefulness and limitations of laws and principles of physics and use them in solving problems encountered in their daily lives along a sound foundation for students who wish to study physics or related professional or vocational courses in higher education. It also helps to develop science related attitudes such as a concern for safety and efficiency, concern for accuracy and precision, objectivity, a spirit of enquiry, inventiveness, appreciation of ethno-science, and willingness to use technology for effective communication. It also promotes awareness of the principles and laws of science that are often the result of cumulative efforts and their studies and applications are subject to economic and technological limitations and social, cultural and ethical perceptions/acceptance.

The curriculum prepared in accordance with National Curriculum Framework is structured for two academic years in such a way that it incorporates the level-wise competencies, grade-wise leaning outcomes, scope and sequence of contents, suggested practical/project activities, learning facilitation process and assessment strategies so as to enhance the learning on the subject systematically.

2. Level-wise competencies

In completion of this course, students are expected to demonstrate the following competencies:

- 1. relate the phenomena and processes of the world around them to the knowledge and understanding of physical laws, principles and theories and describe them using appropriate scientific vocabulary, terminology and conventions
- 2. use scientific instruments, apparatus and methods to collect, evaluate and communicate information accurately and precisely
- 3. design simple experiment to develop relations among physical quantities,
- 4. carryout simple scientific research on issues related to physics and
- 5. construct simple models to illustrate physical concepts

6. use the knowledge of physics to promote care for the environment, indigenous knowledge, social values and ethics

3. Grade wise learning Outcomes

Grade 11	Grade 12	
Content Area: Mechanics		
1. Physical Quantities	1. Rotational dynamics	
1.1 Demonstrate the meaning, importance and applications of precision in the measurements	1.1 Recall equations of angular motion and compare them with equations of linear motion	
1.2 Understand the meaning and importance of significant figures in measurements	1.2 Derive the expression for rotational kinetic energy	
1.3 Explain the meaning of dimensions of a physical quantity	1.3 Describe the term moment of inertia and radius of gyration	
1.4 Workout the dimensions of derived physical quantities applicable to this syllabus	1.4 Find the moment of inertia of thin uniform rod rotating about its center and its one end	
1.5 Apply dimensional analysis method to check the homogeneity of physical equations	1.5 Establish the relation between torque and angular acceleration of a rigid body	
	1.6 Describe the work and power in rotational motion with expression	
	1.7 Define angular momentum and prove the principle of conservation of angular momentum	
	1.8 Solve numerical problems and conceptual questions regarding the rotational dynamics	
2. Vectors	2. Periodic motion	
2.1 Distinguish between scalar and vector quantities	2.1 Define simple harmonic motion and state its equation.	
2.2 Add or subtract coplanar vectors by drawing scale diagram (vector triangle,	2.2 Derive the expressions for energy in simple harmonic motion	
parallelogram or polygon method)2.3 Understand the meaning and importance of unit vectors	2.3 Derive the expression for period for vertical oscillation of a mass suspended from coiled spring	
2.4 Represent a vector as two perpendicular components	2.4 Describe angular simple harmonic motion and find its period	
2.5 Resolve co-planer vectors using component method	2.5 Derive expression for period of simple pendulum	

2.6 Describe scalar and vector products	2.6 Explain the damped oscillation
2.7 Understand the meaning and applicatio of scalar and vector product with examp	2.7 Describe forced oscillation and resonance with suitable examples
2.8 Solve related problems.	2.8 Solve the numerical problems and conceptual questions regarding the periodic motion
3. Kinematics	3. Fluid statics
3.1 Define displacement, instantaneous velocity and acceleration with relevant	3.1 State and explain Archimedes principle and Pascal's law
3.2 Explain and use the concept of relative velocity	3.2 Define up-thrust, pressure in fluid, buoyancy, center of buoyancy and meta center
3.3 Draw displacement-time and velocity-t	me 3.3 State and use the law of floatation,
graph to represent motion, and determin velocity from the gradient of displacement time graph, acceleration	 3.4 Describe surface tension and explain its principle
from the gradient of velocity-time grap and displacement from the area under a	13.5Establish the relation between surface energy and surface tension
velocity-time graph 3.4 Establish equations for a uniformly	3.6 Define angle of contact and capillarity with examples
accelerated motion in a straight line fro graphical representation of such motior and use them to solve related numerical	m 3.7 State the Newton's Formula for viscosity of a liquid and define coefficient of viscosity
3.5 Write the equations of motion under the action of gravity and solve numerical problem related to it	3.8 Differentiate between laminar and turbulent flow & describe Reynolds number
3.6 Understand projectile motion as motion	3.9 Recall and use the Poiseuille's formula
due to a uniform velocity in one direction and a uniform acceleration in a perpendicular direction, derive the equations for various physical quantities	 3.10 State Stoke's law and use it to determine the coefficient of viscosity of given liquid
(maximum height, time of flight, time taken to reach maximum height, horizo	antal 3.11 Explain equation of continuity and its application
range, resultant velocity) and use them solve mathematical problems related to projectile motion	to 3.12 Recall the Bernoulli's equation and explain its uses
projectic inclicit	3.13 Solve the numerical problems and conceptual questions regarding the fluid statics
4. Dynamics:	-
4.1 Define linear momentum, impulse, and establish the relation between them	

4.2	Define and use force as rate of change of momentum	
4.3	State and prove the principle of conservation of linear momentum using Newton's second and Newton's third of motion	
4.4	Define and apply moment of a force and torque of a couple	
4.5	State and apply the principle of moments	
4.6	State and apply the conditions necessary for a particle to be in equilibrium	
4.7	State and explain the laws of solid friction	
4.8	Show the coefficient of friction is equal to the tangent of angle of repose and use the concept to solve problems.	
4.9	Solve the numerical problem and conceptual question on dynamics	
5. V	Vork, energy and power:	-
5.1	Explain work done by a constant force and a variable force	
5.2	State and prove work-energy theorem	
5.3	Distinguish between kinetic energy and potential energy and establish their formulae	
5.4	State and prove the principle of conservation of energy	
5.5	Differentiate between conservative and non-conservative force	
5.6	Differentiate between elastic and inelastic collision and hence explain the elastic collision in one dimension	
5.7	Solve the numerical problems and conceptual questions regarding work, energy, power and collision	
6. (Circular motion	-
6.1	Define angular displacement, angular velocity and angular acceleration	
6.2	Establish the relation between angular and linear velocity & acceleration	
6.3	Define centripetal force	

6.4	Derive the expression for centripetal acceleration and use it to solve problems related to centripetal force	
6.5	Describe the motion in vertical circle, motion of vehicles on banked surface	
6.6	Derive the period for conical pendulum	
6.7	Solve the numerical problem and conceptual question on circular motion	
7. Gr	avitation	-
7.1	Explain Newton's law of gravitation	
7.2	Define gravitational field strength	
7.3	Define and derive formula of gravitational potential and gravitational potential energy	
7.4	Describe the variation in value of 'g' due to altitude and depth	
7.5	Define center of mass and center of gravity	
7.6	Derive the formula for orbital velocity and time period of satellite	
7.7	Define escape velocity and derive the expression of escape velocity	
7.8	Find the potential and kinetic energy of the satellite	
7.9	Define geostationary satellite and state the necessary conditions for it	
7.10	Describe briefly the working principle of Global Position -System (GPS)	
7.11	Solve the numerical problems and conceptual questions regarding related to the gravitation	
8. Ela	sticity	-
8.1 S	tate and explain Hooke's law	
8.2 E a	Define the terms stress, strain, elasticity nd plasticity	
8.3 E a s	Define the types of elastic modulus such s young modulus, bulk modulus and hear modulus	
8.4 E	Define Poisson's ratio	
8.5 E	Derive the expression for energy stored in	

Secondary Education Curriculum 2076 (Physics)

a stretched wire			
8.6 Solve the numerical problems and conceptual questions regarding elasticity			
Content Area: Heat	and thermodynamics		
9. Heat and temperature	4. First Law of Thermodynamics		
9.1 Explain the molecular concept of thermal energy, heat and temperature, and cause and direction of heat flow	4.1 Clarify the concept of thermodynamic system.4.2 Evaluate the meaning of work does by		
9.2 Explain the meaning of thermal equilibrium and Zeroth law of thermodynamics.9.3 Explain thermal equilibrium as a working	4.2 Explain the meaning of work done by the system and work done on the system, and describe how work done by gas during expansion can be calculated from indicator (P – V) diagram.		
principle of mercury thermometer.	4.3 Explain the concept of latent heat and internal energy.		
	 4.4 State and explain first law of thermodynamics - increase of internal energy (dU) = heat into the system (dQ) + work done on the system (PdV) realizing its limitations and necessity of second law of thermodynamics. 		
	4.5 Define and explain two specific heat capacities of gas appreciating the relation $Cp - Cv = R$ and $cp - cv = r$.		
	 4.6 Explain various thermodynamic process (isothermal, isobaric, isochoric and adiabatic) with good concept of their P – V diagram. 		
	4.7 Derive adiabatic equation $PV\gamma = constant$.		
	4.8 Derive expression for work done during isothermal and adiabatic process.		
	4.9 Give concept of reversible and irreversible process with examples.		
	4.10 Solve mathematical problems related to first law of thermodynamics and thermodynamic process.		
10. Thermal Expansion	5. Second Law of Thermodynamics		
10.1 Explain some examples and applications of thermal expansion, and	5.1 State and explain second law of thermodynamics (Kelvin's and		

	demonstrate it with simple experiments.	Clausius's statement).
10.2	Explain linear, superficial, cubical expansion and define their corresponding coefficients with	5.2 Compare second and first law of thermodynamics considering indication of direction of flow of heat.
10.3	physical meaning. Establish a relation between coefficients of thermal expansion.	5.3 Explain heat engine as a device to convert heat energy into mechanical energy appreciating that its efficiency is less than 100%
10.4	Describe Pullinger's method to determine coefficient of linear expansion.	5.4 Discuss Carnot's cycle with the concept of P – V diagram and calculate the work
10.5	Explain force set up due to expansion and contraction.	done of each step and corresponding efficiency.
10.6	Explain differential expansion and its applications.	5.5 Describe internal combustion engines, Otto engine and diesel engine with the
10.7	Explain the variation of density with temperature.	efficiencies.
10.8	Explain real and apparent expansion of liquid appreciating the relation $\gamma r = \gamma g + \gamma g$	5.6 Explain retrigerator as heat engine working in reverse direction
10.0	γa.	5.7 Introduce entropy as a measure of disorder appreciating its roles in
10.9	to determine absolute expansivity of liquid.	5.8 Solve mathematical problems related to heat engine
10.10	Solve mathematical problems related to thermal expansion.	neur onglite.
11. Q	uantity of Heat	-
11.1	Define heat capacity and specific heat capacity and explain application of high specific heat capacity of water and low specific heat capacity of cooking oil and massage oil	
11.2	Describe Newton's law of cooling with some suitable daily life examples.	
11.3	Explain the principle of calorimetry and describe any one standard process of determining specific heat capacity of a solid	
11.4	Explain the meaning of latent heat of substance appreciating the graph between heat and temperature and define specific latent heat of fusion and vaporization.	
11.5	Describe any one standard method of	

	measurement of specific latent heat of fusion and explain briefly the effect of external pressure on boiling and melting point.	
11.6	Distinguish evaporation and boiling.	
11.7	Define triple point.	
11.8	Solve mathematical problems related to heat	
12. R	ate of heat flow	-
12.1	Explain the transfer of heat by conduction, convection and radiation with examples and state their applications in daily life.	
12.2	Define temperature gradient and relate it with rate of heat transfer along a conductor.	
12.3	Define coefficient of thermal conductivity and describe Searl's method for its determination.	
12.4	Relate coefficient of reflection (r), coefficient of transmission (t) and coefficient of absorption $(r + a + t = 1)$.	
12.5	Explain ideal radiator ($e= 1$, $a=1$) and black body radiation.	
12.6	State and explain Stefan's law of black body radiation using terms; emissive power and emissivity.	
12.7	Describe idea to estimate apparent temperature of sun.	
12.8	Solve mathematical problems related to thermal conduction and black body radiations.	
13. Id	leal gas	-
13.1	Relate pressure coefficient and volume coefficient of gas using Charles's law and Boyle's law.	
13.2	Define absolute zero temperature with the support of P - V, V- T graph.	
13.3	Combine Charles's law and Boyle's law to obtain ideal gas equation.	
13.4	Explain molecules, inter molecular	

	forces, moles and Avogadro's number.	
13.5	Explain the assumptions of kinetic – molecular model of an ideal gas.	
13.6	Derive expression for pressure exerted by gas due to collisions with wall of the container appreciating the use of Newton's law of motion.	
13.7	Explain the root mean square speed of gas and its relationship with temperature and molecular mass.	
13.8	Relate the pressure and kinetic energy.	
13.9	Calculate the average translational kinetic energy of gas for 1 molecule and Avogadro's number of molecules.	
13.10	Solve mathematical problems related ideal gas.	
	Content Area : W	ave and Optics
14. Re	eflection at curved mirrors	6. Wave motion
14.1	State the relation between object distance, image distance and focal	6.1 Define and understand progressive wave
14 2	State the relation between object size	6.2 Write progressive wave in mathematical form
14.2	and image size	6.3 Discuss the condition under which
14.5	and virtual image in geometrical optics	6.4. Write stationers wave in mathematical
14.4	Calculate the focal length of curved	form
	mirrors and its applications	6.5 Calculate frequency, amplitude, velocity, time period, etc of progressive wave
		6.6 Find expression for stationary wave using two progressive waves
15. Re	efraction at plane surfaces	7. Mechanical waves
15.1	Recall the laws of refraction	7.1 Calculate Speed of wave motion
15.2	Understand the meaning of lateral shift	7.2 Understand and write expression for the
15.3	Understand the meaning of refractive index of a medium	7.3 Describe Velocity of sound in gas
15.4	Calculate refractive index of a medium	7.4 Describe Laplace correction
	using angle of incidence and angle of refraction	7.5 Formulate the effect of temperature, pressure, humidity on velocity of sound

15.5	Learn the relation between the	and their physical meaning
	refractive indices	7.6 Solve numerical problems related to
15.6	Know the meaning of total internal reflection and the condition for it	velocity of sound in the given medium and condition
15.7	Understand critical angle and learn the applications of total internal reflection	
15.8	Explain the working principle of optical fiber	
16. R	efraction through prisms:	8. Wave in pipes and strings
16.1	Understand minimum deviation condition	8.1 Understand the formation of stationery waves in closed and open pipes
10.2 1	angle of minimum deviation and refractive index	8.2 Define and understand harmonics and overtones
16.3 U	Use above relations to find the values of refractive index of the prism	8.3 Discuss harmonics and overtones in closed and open organ pipes
16.4 1	Understand deviation in small angle	8.4 Understand end correction in pipes
I	prism and learn its importance in real life	8.5 State and use the formula for velocity of transverse waves along a stretched string
		8.6 Understand Vibration of string and overtones
		8.7 Know the laws of vibration of fixed string.
17. Le	enses	9. Acoustic phenomena:
17.1 \$	State properties of Spherical lenses	9.1 Describe sound waves as pressure waves in a medium
17.2 S i	State the relation between object distance, image distance and focal length of a convex lens	9.2 Characterize the sound using its intensity, loudness, quality and pitch
17.3 1	Define visual angle and angular	9.3 Discuss Doppler's effect
1	magnification	9.4 Apply Doppler effect in realistic case
17.4 I t	to find focal length	relative motion.
18. Di	ispersion	10. Nature and propagation of Light:
18.1	Understand pure spectrum	10.1 Use Huygen's principle to explain
18.2	Learn the meaning of dispersive power	reflection and refraction of light
18.3	Discuss chromatic and spherical aberration	
18.4	Discuss achromatism in lens and its applications	

	-	11. Int	terference
		11.1 E: In	xplain the Phenomenon of terferences
		11.2 U sc	nderstand the meaning of coherent ources
		11.3 D ex fr	escribe Young's double slit operiment and obtain the expression o nth order maxima
	-	12. Di	ffraction
		12.1 D	escribe diffraction at a single slit
		12.2 U ar po	nderstand diffraction pattern of image nd derive the expression for the osition of nth order minima
		12.3 E: tra th	xplain diffraction through ansmission/diffraction grating and use e formula d sinqn = nl for maxima
		12.4 E: in	xplain resolving power of optical struments
	-	13. Po	larization
		13.1 D	escribe phenomenon of polarization
		13.2 Ez	xplain how polarization of light xplains the transverse nature of light
		13.3 St	tate and use Brewster's law
		13.4 Sl cc us er of	how the understanding of onstruction, working principle and ses of Potentiometer for comparing nfs and measuring internal resistance f cells
	Content Area: Electri	city and	Magnetism
19. E	lectric charges	14. Ele	ectrical circuits:
19.1	Understand the concept of electric charge and charge carriers	14.1	Understand Kirchhoff's law as well as use it to calculate unknown
19.2	Understand the process of charging by friction and use the concept to explain related day to day observations	14.2	parameters in electrical circuits Describe the circuit diagram and working of Wheatstone bridge
19.3	19.3 Understand that, for any point outside a spherical conductor, the charge on the		circuit and understand its importance in real situation
	sphere may be considered to act as a point charge at its centre	14.3	Describe Meter bridge and understand it

19.4	State Coulomb's law	14.4	Know construction, working and
19.5	Recall and use $F = \frac{Qq}{4\pi\varepsilon_0 r^2}$ for the force between two point charges in free space	14.5	Understand the concept of super conductors
19.6	Compute the magnitude and direction of the net force acting at a point due to multiple charges	14.6	Know the meaning of perfect conductors and distinguish it from superconductor
	inumple charges	14.7	Learn the technique to convert galvanometer into voltmeter and ammeter
20. El	ectric field:	15. T	hermoelectric effects:
20.1	Describe an electric field as a region in which an electric charge experiences a	15.1	Explain Seebeck effect and its application in Thermocouples
20.2	force Define electric field strength as force per unit positive charge acting on a stationary point charge	15.2	Show understanding of the construction and working principle of thermocouple as a temperature measuring device
20.3	Calculate forces on charges in uniform	15.3	Explain Peltier effect
20.4	Use $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ strength of a point charge in free space or air	15.4	Understand the construction and working of Thermopile
20.5	Illustrate graphically the changes in electric field strength with respect distance from a point charge		
20.6	Represent an electric field by means of field lines		
20.7	Describe the effect of a uniform electric field on the motion of charged particles		
20.8	Understand the concept of electric flux of a surface		
20.9	State Gauss law and apply it for a field of a charged sphere and for line charge		
20.10	Understand that uniform field exists between charged parallel plates and sketch the field lines		
21. Po	tential, potential difference and	16. N	lagnetic field:
poten	tial energy	16.1	Show understanding of the concept of
21.1	Define potential at a point as the work done per unit positive charge in bringing a small test charge from infinity to the point		magnetic field lines and magnetic flux and sketch magnetic field lines around a straight current carrying conductor and long solenoid

21.2	Use electron volt as a unit of electric potential energy	16.2	Explain Oersted's experiment, its outcome and limitations
21.3	Recall and use $V = \frac{Q}{4\pi\varepsilon_0 r}$ for the	16.3	Discuss force on moving charge in uniform magnetic field
21.4	Illustrate graphically the variation in potential along a straight line from the source charge and understand that the	16.4	Discuss force on a current carrying conductor placed in uniform magnetic field
	field strength of the field at a point is equal to the negative of potential gradient at that point	16.5	Describe force and Torque on rectangular coil placed in uniform magnetic field
21.5	Understand the concept of equipotential lines and surfaces and relate it to	16.6	Describe moving coil galvanometer and know its applications
21.6	potential difference between two points Recall and use $E = \frac{\Delta V}{\Delta x}$ to calculate the	16.7	Explain Hall effect and derive the expression VH=BI/ntq where t is thickness
	field strength of the uniform field between charged parallel plates in terms of potential difference and	16.8	Use Hall probe to measure flux density of a uniform magnetic field
	separation	16.9	State Biot and Savart law and know its application on (i) a circular coil (ii) a long straight conductor (iii) a long solenoid
		16.10	
		10.10) State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid
		16.11	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere
22. Ca	pacitor	16.11 16.11 17. N	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere
22. Ca 22.1 c	apacitor apacitance and capacitor	16.11 16.11 17. N 17.1	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and
22. Ca 22.1 c a	apacitor apacitance and capacitor . Show understanding of the uses of capacitors in simple electrical circuits	16.11 16.11 17. N 17.1	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and relative susceptibility of a magnetic material
22. Ca 22.1 c a b	 apacitor apacitance and capacitor Show understanding of the uses of capacitors in simple electrical circuits Define capacitance as the ratio of the change in an electric charge in a 	16.11 16.11 17. N 17.1	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and relative susceptibility of a magnetic material Discuss relationship between relative permeability and susceptibility
22. Ca 22.1 c a b	 apacitor apacitance and capacitor Show understanding of the uses of capacitors in simple electrical circuits Define capacitance as the ratio of the change in an electric charge in a system to the corresponding change in its electric is a system. 	16.11 16.11 17. N 17.1 17.2 17.3	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and relative susceptibility of a magnetic material Discuss relationship between relative permeability and susceptibility Discuss Hysteresis of ferromagnetism
22. Ca 22.1 c a b	 apacitor apacitance and capacitor Show understanding of the uses of capacitors in simple electrical circuits Define capacitance as the ratio of the change in an electric charge in a system to the corresponding change in its electric potential and associate it to the ability of a system to store charge 	16.11 16.11 17. N 17.1 17.2 17.3 17.4	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and relative susceptibility of a magnetic material Discuss relationship between relative permeability and susceptibility Discuss Hysteresis of ferromagnetism Understand Dia,-para- and ferromagnetic materials
22. Ca 22.1 c a b	apacitor apacitance and capacitor . Show understanding of the uses of capacitors in simple electrical circuits b. Define capacitance as the ratio of the change in an electric charge in a system to the corresponding change in its electric potential and associate it to the ability of a system to store charge . Use $C = \frac{Q}{v}$	16.11 16.11 17. N 17.1 17.2 17.3 17.4	 State Ampere's law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid Discuss force between two parallel conductors carrying current- definition of ampere Magnetic properties of materials: Define relative permeability and relative susceptibility of a magnetic material Discuss relationship between relative permeability and susceptibility Discuss Hysteresis of ferromagnetism Understand Dia,-para- and ferromagnetic materials

22.2 Par	rallel plate capacitor		
a.	Derive $C = \frac{\varepsilon_0 A}{d}$, using Gauss law and		
	$C = \frac{Q}{V}$, for parallel plate capacitor		
b.	Explain the effect on the capacitance of parallel plate capacitor of changing the surface area and separation of the plates		
c.	Explain the effect of a dielectric in a parallel plate capacitor in		
22.3 Co	mbination of capacitors		
a.	Derive formula for combined capacitance for capacitors in series combinations		
b.	Solve problems related to capacitors in series combinations		
c.	Derive formula for combined capacitance for capacitors in parallel combinations		
d.	Solve problems related to capacitors in parallel combinations		
22.4 En	ergy stored in a charged capacitor		
a.	Deduce, from the area under the potential-charge graph, the equations $E = \frac{1}{2}QV$ and hence $E = \frac{1}{2}CV^2$ for the average electrical energy of charged capacitor		
22 5 Fff	ect of dielectric		
b.	Show understanding of a dielectric as a material that polarizes when subjected to electric field		
с.	Explain the effect of inserting dielectric between the plates of a parallel plate capacitor on its capacitance		
23. DC	Circuits	18. El	ectromagnetic Induction:
23.1 Ele	ctric Currents; Drift velocity and its with current	18.1	State and show understanding of Faraday's law of electromagnetic
a.	Understand the concept that potential	10.2	induction
	difference between two points in a	18.2	State and show understanding of

conductor makes the charge carriers drift

- b. Define electric current as the rate of flow of positive charge, Q = It
- c. Derive, using Q=It and the definition of average drift velocity, the expression I=nAvq where *n* is the number density of free charge carriers

23.2 Ohm's law Ohm's law; Electrical Resistance: resistivity and conductivity

- a. Define and apply electric resistance as the ratio of potential difference to current
- b. Define *ohm* , *resistivity* and *conductivity*
- c. Use $R = \rho l / A$ for a conductor
- *d*. Explain, using $R = \rho l / A$, how changes in dimensions of a conducting wire works as a variable resistor
- e. Show an understanding of the structure of strain gauge (pressure sensor) and relate change in pressure to change in in resistance of the gauge
- *f.* Show an understanding of change of resistance with light intensity of a light-dependent resistor (the light sensor)
- *g.* Show an understanding of change of resistance of *n-type* thermistor to change in temperature (electronic temperature sensor)

23.3 Current-voltage relations: ohmic and non-ohmic

- a. Sketch and discuss the I–V characteristics of a metallic conductor at constant temperature, a semiconductor diode and a filament lamp d) state Ohm's law
- b. State Ohm's law and identify ohmic and non-ohmic resistors

Lenz's law

- 18.3 Discuss construction and working of A.C. generators
- 18.4 Define eddy currents, explain how they arise and give a few examples where eddy currents are useful and where they are nuisance
- 18.5 Describe self-inductance and mutual inductance and understand their uses
- 18.6 State the expression for energy stored in an inductor and use it wherever needed
- 18.7 Discuss the construction, working principle and importance of transformer
- 18.8 Discuss the sources of energy loss in practical transformer

19. Alternating Currents:

- 19.1 Understand peak and rms value of AC current and voltage
- 19.2 Discuss AC through a resistor, a capacitor and an inductor
- 19.3 Understand Phasor diagram in RC and RL circuits
- 19.4 Discuss series circuits containing combination of resistance, capacitance and inductance
- 19.5 Describe series resonance condition and know its applications
- 19.6 Understand the meaning of quality factor
- 19.7 Discuss power in AC circuits and know the term power factor

23.4 Re	sistances in series and parallel
a.	Derive, using laws of conservation of charge and conservation of energy, a formula for the combined resistance of two or more resistors in parallel
b.	Solve problems using the formula for the combined resistance of two or more resistors in series
c.	Derive, using laws of conservation of charge and conservation of energy, a formula for the combined resistance of two or more resistors in parallel
d.	Solve problems using the formula for the combined resistance of two or more resistors in series and parallel to solve simple circuit problems
23.5 Pot	tential divider
a.	Understand the principle of a potential divider circuit as a source of variable p.d. and use it in simple circuits
b.	Explain the use of sensors (thermistors, light-dependent resistors and strain gauges) in potential divider circuit as a source of potential difference that is dependent on temperature, illumination and strain respectively
23.6 Ele internal	ctromotive force of a source, resistance
a.	Define electromotive force (e.m.f.) in terms of the energy transferred by a source in driving unit charge round a complete circuit
b.	Distinguish between e.m.f. and potential difference (p.d.) in terms of energy considerations
c.	Understand the effects of the internal resistance of a source of e.m.f. on the terminal potential difference
23.7 Wo	ork and power in electrical circuit
а.	Derive from the definition of V and I, the relation $P=IV$ for power in

	electric circuit		
b	. Use $P=IV$		
С	Derive $P=I^2R$ for power dissipated in a resistor of resistance R and use the formula for solving the problems of heating effects of electric current		
	Content Area: N	lodern	1 Physics
24. Nu	clear physics	20. E	lectrons
24.1	Explain how nucleus was discovered	20.1	Describe Millikan's oil drop
24.2	Convey the meaning of mass number, atomic number		experiment and explain how it suggests quantization of charge
24.3	Calculate the expression of nuclear density	20.2	Describe the motion of electrons in electric and magnetic fields and derive appropriate mathematical expressions
24.4	Explain the existence of different isotopes of the same element	20.3	Describe J.J Thomson's experiment with suitable diagrams to explain the
24.5	Describe main theme of Einstein's mass energy relation and state the relation		discovery of electron and its characters
24.6	Explain the meaning of mass defect and cause of it	20.4	Solve numerical problems related to above topics
24.7	Describe the terms creation and annihilation		
24.8	Derive the relation of binding energy and binding energy per unit nucleon of different nuclei		
24.9	Plot a graph between BE per nucleon and mass number of different nuclei		
24.10	Define nuclear fusion and fission and explain the mechanism of energy release		
24.11	Solve numerical problems related to nuclear physics		
25. So	lids	21. P	Photons
25.1	Distinguish between energy level and energy band along with the formation of energy band in solids	21.1	Describe quantum nature of radiation
25.2	Differentiate motels, comised dustant	21.2	Explain properties of photons
23.2	and conductors on the basis of energy band	21.3	Describe work function and photoelectric effect
25.3	Explain the meaning of intrinsic and	21.4	Derive Einstein's photoelectric

	extrinsic semiconductors with examples		equation
25.4 25.5	Explain how p and n type semiconductors are formed Interpret unit related conceptual	21.5	Describe Millikan's experiment for the verification of Einstein's photoelectric equation and calculate Planck's constant
	questions clearly	21.6	Solve some related problems
26. R	ecent Trends in Physics	22. S	emiconductor devices
26.1	Explain elementary particles and antiparticles	22.1	Describe the formation of PN junction and semiconductor diode
26.2	Classify the particles with examples	22.2	Plot forward and reverse
26.3	Name different quarks with their charges and symbols		characteristics of semiconductor diode including the concept of Zener diode
26.4	Write quark combination of few	22.3	Define rectifier
	mesons and baryons particles	22.4	Describe full wave rectification using
26.5	Describe leptons with examples	22.5	Define logic gates and explain
26.6	Explain Big Bang and Hubble's law and justify the expansion of the universe	22.3	operation of different logic gates OR, AND, NOT, NAND and NOR gates with their symbol Boolean algebra
26.7	Briefly describe dark matter, black hole and gravitational wave		and truth table
	8		
	-	23. Q	Quantization of energy
	-	23. Q 23.1	Quantization of energy Write the postulates of Bohr's model
	_	23. Q 23.1 23.2	Quantization of energy Write the postulates of Bohr's model Derive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atom
	-	23. Q 23.1 23.2 23.3	Quantization of energy Write the postulates of Bohr's model Derive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atom Obtain the expression of wavelength of a spectral line
	-	 23. Q 23.1 23.2 23.3 23.4 	Quantization of energy Write the postulates of Bohr's model Derive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atom Obtain the expression of wavelength of a spectral line Obtain mathematical expressions different spectral series of H-atom
	-	 23. Q 23.1 23.2 23.3 23.4 23.5 	Quantization of energy Write the postulates of Bohr's model Derive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atom Obtain the expression of wavelength of a spectral line Obtain mathematical expressions different spectral series of H-atom Differentiate excitation and ionization potentials
	-	 23. Q 23.1 23.2 23.3 23.4 23.5 23.6 	Quantization of energyWrite the postulates of Bohr's modelDerive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atomObtain the expression of wavelength of a spectral lineObtain mathematical expressions different spectral series of H-atomDifferentiate excitation and ionization potentialsExplain emission and absorption spectra
	-	 23. Q 23.1 23.2 23.3 23.4 23.5 23.6 23.7 	Quantization of energyWrite the postulates of Bohr's modelDerive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atomObtain the expression of wavelength of a spectral lineObtain mathematical expressions different spectral series of H-atomDifferentiate excitation and ionization potentialsExplain emission and absorption spectraDescribe de Broglie hypothesis
	-	 23. Q 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 	Quantization of energyWrite the postulates of Bohr's modelDerive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atomObtain the expression of wavelength of a spectral lineObtain mathematical expressions different spectral series of H-atomDifferentiate excitation and ionization potentialsExplain emission and absorption spectraDescribe de Broglie hypothesis Define x-rays
	-	 23. Q 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 	Quantization of energyWrite the postulates of Bohr's modelDerive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atomObtain the expression of wavelength of a spectral lineObtain mathematical expressions different spectral series of H-atomDifferentiate excitation and ionization potentialsExplain emission and absorption spectraDescribe de Broglie hypothesisDefine x-raysDescribe modern Coolidge tube method for the production of x-rays with quality and quantity

	along with their applications
	23.11 Solve numerical problems related to quantization of energy
-	24. Radioactivity and nuclear reaction
	24.1 Explain the meaning of Radioactivity – natural and artificial
	24.2 Differentiate types of radiations coming from radioactive sources – alpha, beta particles and gamma rays and state their properties
	24.3 Explain radioactive disintegration law
	24.4 Obtain the expressions of half-life, decay constant and mean life
	24.5 Explain the working of Geiger-Muller Tube
	24.6 Analyze some medical uses and health hazard of nuclear radiation
	24.7 Work out some related numerical problems
	24.8 Reason conceptual questions
-	25. Recent trends in physics
	25.1 Seismology
	a. Briefly explain the origin of earthquakes
	b. Explain different types of surface waves: Rayleigh and Love waves
	c. Explain different types of internal waves: S and P-waves
	d. Give brief introduction to the wave patterns of Gorkha Earthquake 2015
	25.2 Demonstrate basic ideas on
	a. Gravitational Wave
	b. Nanotechnology
	c. Higgs Boson

4. Scope and Sequence of Contents

Grade 11		Grade 12	
Contents	ТH	Contents	ТН
Conten	t Area	: Mechanics	
1. Physical Quantities	3	1. Rotational dynamics	7
1.1. Precision and significant figures. Dimensions and uses of dimensional analysis.		1.1 Equation of angular motion, Relation between linear and angular kinematics	
		1.2 Kinetic energy of rotation of rigid body	
		1.3 Moment of inertia; Radius of gyration	
		1.4 Moment of inertia of a uniform rod	
		1.5 Torque and angular acceleration for a rigid body	
		1.6 Work and power in rotational motion	
		1.7 Angular momentum, conservation of angular momentum.	
2. Vectors	4	2. Periodic motion	6
2.1. Triangle, parallelogram and polygon laws of vectors		2.1 Equation of simple harmonic motion (SHM)	
2.2. Resolution of vectors; Unit vectors		2.2 Energy in SHM	
2.3. Scalar and vector products.		2.3 Application of SHM: vertical oscillation of mass suspended from coiled spring	
		2.4 Angular SHM, simple pendulum	
		2.5 Oscillatory motion: Damped oscillation, Forced oscillation and resonance.	
3. Kinematics	5	3. Fluid statics	9
3.1 Instantaneous velocity and acceleration		3.1 Fluid statics: Pressure in a fluid; Buoyancy	
		3.2 Surface tension: Theory of	

3.2 Relative velocity		surface tension; Surface energy	
3.3 Equation of motion (graphical treatment)		3.3 Angle of contact, capillarity and its applications	
3.4 Motion of a freely falling body		3.4 Fluid Dynamics: Newton's	
3.5 Projectile motion and its applications.		formula for viscosity in a liquid; Coefficient of viscosity	
		3.5 Poiseuille's formula and its application	
		3.6 Stokes law and its applications	
		3.7 Equation of continuity and its applications	
		3.8 Bernoulli's equation and its applications.	
4. Dynamics	6	-	
4.1 Linear momentum, Impulse			
4.2 Conservation of linear momentum			
4.3 Application of Newton's laws			
4.4 Moment, torque and equilibrium			
4.5 Solid friction: Laws of solid friction and their verifications.			
5. Work, energy and power	6	-	
5.1 Work done by a constant force and a variable force			
5.2 Power			
5.3 Work-energy theorem; Kinetic and potential energy			
5.4 Conservation of Energy			
5.5 Conservative and non-conservative forces			
5.6 Elastic and inelastic collisions.			
6. Circular Motion	6	-	
6.1 Angular displacement, velocity and acceleration			
6.2 Relation between angular and linear velocity and acceleration			
6.3 Centripetal acceleration			
6.4 Centripetal force			

6.7 Conical pendulum			
6.8 Motion in a vertical circle			
6.9 Applications of banking.			
7. Gravitation	10	-	
7.1 Newton's law of gravitation			
7.2 Gravitational field strength			
7.3 Gravitational potential; Gravitational potential energy			
7.4 Variation in value of 'g' due to altitude and depth			
7.5 Centre of mass and center of gravity7.6 Motion of a satellite: Orbitalvelocity and time period of thesatellite			
7.7 Escape velocity			
7.8 Potential and kinetic energy of the satellite			
7.9 Geostationary satellite			
7.10 GPS			
8. Elasticity	5	-	
8.1 Hooke's law: Force constant			
8.2 Stress; Strain; Elasticity and plasticity			
8.3 Elastic modulus: Young modulus, bulk modulus, shear modulus			
8.4 Poisson's ratio			
8.5 Elastic potential energy.			
Content Area: I	Heat aı	nd Thermodynamics	
9. Heat and Temperature	3	4. First Law of Thermodynamics	6
9.1 Molecular concept of thermal		4.1 Thermodynamic systems	
energy, heat and temperature, and cause and direction of heat flow		4.2 Work done during volume change	
9.2 Meaning of thermal equilibrium and Zeroth law of thermodynamics.		4.3 Heat and work; Internal energy and First law of thermodynamics	
9.3 Thermal equilibrium as a working principle of mercury thermometer.		4.4 Thermodynamic processes: Adiabatic, isochoric, isothermal	

10 Thormal Expansion	4	and isobaric	
10.1 Linear expansion and its measurement	4	4.5 Heat capacities of an ideal gas at constant pressure and volume	
10.2 Cubical expansion, superficial expansion and its relation with linear expansion		4.6 Isothermal and Adiabatic processes for an ideal gas.	
10.3 Liquid Expansion: Absolute and apparent			
10.4 Dulong and Petit method of determining expansivity of liquid			
11. Quantity of Heat	6	5. Second Law of Thermodynamics	6
11.1 Newton's law of cooling11.2 Measurement of specific heat		5.1 Thermodynamic systems and direction of thermodynamic processes	
11.3 Change of phases: Latent heat		5.2 Second law of thermodynamics	
11.4 Specific latent heat of fusion and		5.3 Heat engines	
vaporization		5.4 Internal combustion engines:	
11.5 Measurement of specific latent heat of fusion and vaporization		Otto cycle, Diesel cycle; Carnot cycle	
11.6 Triple point		5.5 Refrigerator	
		5.6 Entropy and disorder (introduction only)	
12. Rate of heat flow	5	-	
12.1 Conduction: Thermal conductivity and measurement			
12.2 Convection			
12.3 Radiation: Ideal radiator			
12.4 Black- body radiation			
12.5 Stefan – Boltzmann law.			
13. Ideal gas	8	-	
13.1 Ideal gas equation			
13.2 Molecular properties of matter			
13.3 Kinetic-molecular model of an ideal gas			
13.4 Derivation of pressure exerted by gas,			
13.5 Average translational kinetic			

energy of gas molecule 13.6 Boltzmann constant, root mean square speed 13.7 Heat capacities: gases and solids.Image: Content Verse SubjectsContent Verse SubjectsContent Verse Subjects14. Reflection at curved mirror 14. Reflection at curved mirror 14. Meal and Virtual images.26. Wave motion 6.1 Progressive waves 6.2 Mathematical description of a wave 6.3 Stationary waves2IS. Refraction at plane surfaces 15.1 Laws of refraction: Refractive index47. Mechanical waves415.2 Relation between refractive indices 15.3 Lateral shift7.1 Speed of wave motion; Velocity of sound in solid and liquid 7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index38. Wave in pipes and strings416.1 Minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index38. Vare in pipes and strings416.3 Deviation in small angle prism.38. Correction in pipes517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.1 Spherical lenses, angular magnification310. Nature and progragation of itch517.1 Spherical lenses, angular magnification310. Nature and progragation of itch517.2 Lens maker's formula310. Nature and progragation of itch517.3 Down of a lens31				
13.6 Boltzmann constant, root mean square speed2613.7 Heat capacities: gases and solids.Content X-rea: Waves & Optics2Content X-rea: Waves & Optics14. Reflection at curved mirror 14.1 Real and Virtual images. 14.2 Mirror formula26. Wave motion 6.1 Progressive waves 6.3 Stationary waves215. Refraction at plane surfaces 15.1 Laws of refraction: Refractive index47. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid 7.2 Velocity of sound in gas415.2 Relation between refractive indices 15.3 Lateral shift7.3 Laplace's correction 7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index38. Wave in pipes and strings416.1 Minimum deviation condition 16.2 Relation in small angle prism.38. Vaci of sound in gas related and open organ pipes416.3 Deviation in small angle prism.39. Acoustic phenomena s.6 Laws of vibration of fixed string.517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude <t< td=""><td>energy of gas molecule</td><td></td><td></td><td></td></t<>	energy of gas molecule			
13.7 Heat capacities: gases and solids.Image: Content Area: Waves & OpticsContent Area: Waves & Optics14. Reflection at curved mirror26. Wave motion214.1 Real and Virtual images.6.1 Progressive waves6.2 Mathematical description of a wave7.3 Stationary waves415. Refraction at plane surfaces47. Mechanical waves415. Laws of refraction: Refractive indices7.1 Speed of wave motion; Velocity of sound in solid and liquid7.2 Velocity of sound in gas15.2 Relation between refractive indices7.3 Laplace's correction7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.1 Stationary waves in closed and open organ pipes417.1 Spherical lenses, angular magnification38.1 Accounting and overtones in closed and open organ pipes517.1 Spherical lenses, angular magnification39.1 Sound waves: Pressure anglitude517.2 Lens maker's formula9.1 Sound waves: pressure anglitude9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.18. Dispersion310. Nature and propagation of light10. Nature and propagation of light3	13.6 Boltzmann constant, root mean square speed			
Content Area: Waves & Optics14. Reflection at curved mirror26. Wave motion214.1 Real and Virtual images.6.1 Progressive waves6.2 Mathematical description of a wave214.2 Mirror formula6.1 Progressive waves6.2 Mathematical description of a wave415. Refraction at plane surfaces47. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid415.2 Relation between refractive indices7.2 Velocity of sound in gas7.3 Laplace's correction15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition refractive index8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.3 End correction in pipes16.3 Deviation in small angle prism.39. Acoustic phenomena517.1 Spherical lenses, angular magnification39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.318.1 Dura construm and disearative310. Nature and propagation of light3	13.7 Heat capacities: gases and solids.			
14. Reflection at curved mirror26. Wave motion214.1 Real and Virtual images.6.1 Progressive waves6.2 Mathematical description of a wave6.3 Stationary waves14.2 Mirror formula6.1 Progressive waves6.2 Mathematical description of a wave6.3 Stationary waves15. Refraction at plane surfaces47. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid7.2 Velocity of sound in gas15.2 Relation between refractive indices7.3 Laplace's correction7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index38. Wave in pipes and strings416.3 Deviation in small angle prism.38. Harmonics and overtones in closed and open organ pipes8.3 End correction in pipes517.1 Spherical lenses, angular magnification39. Acoustic phenomena517.1 Spherical lenses, angular magnification39. Acoustic phenomena517.3 Power of a lens310. Nature and propagation of light3	Content A	rea: W	Vaves & Optics	
14.1 Real and Virtual images.6.1 Progressive waves14.2 Mirror formula6.2 Mathematical description of a wave14.2 Mirror formula6.3 Stationary waves15. Refraction at plane surfaces415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid15.2 Relation between refractive indices7.2 Velocity of sound in gas15.3 Lateral shift7.3 Laplace's correction15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms316.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes16.3 Deviation in small angle prism.8.3 End correction in pipes17. Lenses39. Acoustic phenomena17.1 Spherical lenses, angular magnification317.2 Lens maker's formula317.3 Power of a lens318. Dispersion318. L Pure areacterum and diagnarius18. L Pure areacterum and diagnarius	14. Reflection at curved mirror	2	6. Wave motion	2
14.2 Mirror formula6.2 Mathematical description of a wave6.3 Stationary waves15. Refraction at plane surfaces47. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid415.2 Relation between refractive indices7.2 Velocity of sound in gas115.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms minimum deviation condition38. Wave in pipes and strings416.3 Deviation in small angle prism.8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes417. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification39. Acoustic phenomena517.1 Spherical lenses, angular magnification39. Acoustic phenomena517.3 Power of a lens310. Nature and propagation of318. Dispersion310. Nature and propagation of3	14.1 Real and Virtual images.		6.1 Progressive waves	
15. Refraction at plane surfaces47. Mechanical waves415.1 Laws of refraction: Refractive index7. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid7.2 Velocity of sound in gas15.2 Relation between refractive indices7.3 Laplace's correction7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.3 End correction in pipes417.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.2 Lens maker's formula 17.3 Power of a lens310. Nature and propagation of light3	14.2 Mirror formula		6.2 Mathematical description of a wave	
15. Refraction at plane surfaces index47. Mechanical waves415.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid7.2 Velocity of sound in gas15.2 Relation between refractive indices7.3 Laplace's correction7.4 Effect of temperature, pressure, humidity on velocity of sound.416. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition 16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.4 Velocity of transverse waves along a stretched string517.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude517.2 Lens maker's formula 17.3 Power of a lens310. Nature and propagation of light3			6.3 Stationary waves	
15.1 Laws of refraction: Refractive index7.1 Speed of wave motion; Velocity of sound in solid and liquid15.2 Relation between refractive indices7.2 Velocity of sound in gas15.3 Lateral shift7.3 Laplace's correction15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms316.1 Minimum deviation condition8. Wave in pipes and strings16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes16.3 Deviation in small angle prism.8.3 End correction in pipes16.3 Deviation in small angle prism.8.4 Velocity of transverse waves along a stretched string17. Lenses317.1 Spherical lenses, angular magnification317.2 Lens maker's formula 17.3 Power of a lens318. Dispersion318. Liburg smortum and dimensive319. L Pure smortum and dimensive310. Nature and propagation of light	15. Refraction at plane surfaces	4	7. Mechanical waves	4
15.2 Relation between refractive indices7.2 Velocity of sound in gas15.3 Lateral shift7.3 Laplace's correction15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms316.1 Minimum deviation condition8. Wave in pipes and strings16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes16.3 Deviation in small angle prism.8.3 End correction in pipes16.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones 8.6 Laws of vibration of fixed string.17. Lenses39. Acoustic phenomena amplitude17.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude17.2 Lens maker's formula 17.3 Power of a lens310. Nature and propagation of pight	15.1 Laws of refraction: Refractive index		7.1 Speed of wave motion; Velocity of sound in solid and liquid	
15.3 Lateral shift7.3 Laplace's correction15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.3 End correction in pipes416.1 Minimum deviation and refractive index8.4 Velocity of transverse waves along a stretched string516.3 Deviation in small angle prism.8.4 Velocity of transverse waves along a stretched string517. Lenses39. Acoustic phenomena magnification517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens310. Nature and propagation of gight3	15.2 Relation between refractive indices		7.2 Velocity of sound in gas	
15.4 Total internal reflection.7.4 Effect of temperature, pressure, humidity on velocity of sound.16. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes416.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.3 End correction in pipes16.3 Deviation in small angle prism.8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones17. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens9.1 Onylenes, quality and pitch518. Dispersion310. Nature and propagation of light3	15.3 Lateral shift		7.3 Laplace's correction	
16. Refraction through prisms38. Wave in pipes and strings416.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes8.1 Stationary waves in closed and open pipes416.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes416.3 Deviation in small angle prism.8.3 End correction in pipes8.3 End correction in pipes16.3 Deviation in small angle prism.8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones17. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.18. Dispersion310. Nature and propagation of light3	15.4 Total internal reflection.		7.4 Effect of temperature, pressure, humidity on velocity of sound.	
16.1 Minimum deviation condition8.1 Stationary waves in closed and open pipes16.2 Relation between Angle of prism, minimum deviation and refractive index8.1 Stationary waves in closed and open pipes16.3 Deviation in small angle prism.8.3 End correction in pipes16.3 Deviation in small angle prism.8.3 End correction in pipes8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones8.6 Laws of vibration of fixed string.8.6 Laws of vibration of fixed string.17.1 Spherical lenses, angular magnification39. Acoustic phenomena amplitude17.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch518. Dispersion310. Nature and propagation of light3	16. Refraction through prisms	3	8. Wave in pipes and strings	4
10.2 Relation between Angle of prisit, minimum deviation and refractive index8.2 Harmonics and overtones in closed and open organ pipes16.3 Deviation in small angle prism.8.3 End correction in pipes16.3 Deviation in small angle prism.8.4 Velocity of transverse waves along a stretched string8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones8.6 Laws of vibration of fixed string.8.6 Laws of vibration of fixed string.17. Lenses39. Acoustic phenomena amplitude17.1 Spherical lenses, angular magnification517.2 Lens maker's formula 17.3 Power of a lens9.1 Sound waves: Pressure amplitude18. Dispersion310. Nature and propagation of light	16.1 Minimum deviation condition		8.1 Stationary waves in closed and open pipes	
16.3 Deviation in small angle prism.8.3 End correction in pipes16.3 Deviation in small angle prism.8.3 End correction in pipes8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones 8.6 Laws of vibration of fixed string.17. Lenses39. Acoustic phenomena17.1 Spherical lenses, angular magnification39.1 Sound waves: Pressure amplitude17.2 Lens maker's formula9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.18. Dispersion310. Nature and propagation of light3	minimum deviation and refractive index		8.2 Harmonics and overtones in closed and open organ pipes	
8.4 Velocity of transverse waves along a stretched string8.5 Vibration of string and overtones 8.6 Laws of vibration of fixed string.17. Lenses17.1 Spherical lenses, angular magnification17.2 Lens maker's formula17.3 Power of a lens17.3 Power of a lens18. Dispersion18. Dispersion18. 1 Pure spectrum and dispersive	16.3 Deviation in small angle prism.		8.3 End correction in pipes	
8.5 Vibration of string and overtones 8.6 Laws of vibration of fixed string.17. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.18. Dispersion310. Nature and propagation of light3			8.4 Velocity of transverse waves along a stretched string	
17. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.18. Dispersion 18.1 Pure spectrum and dimensive310. Nature and propagation of light3			8.5 Vibration of string and overtones	
17. Lenses39. Acoustic phenomena517.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude9.1 Sound waves: Pressure amplitude517.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.518. Dispersion 18.1 Pure spectrum and dispersive310. Nature and propagation of light3			8.6 Laws of vibration of fixed string.	
17.1 Spherical lenses, angular magnification9.1 Sound waves: Pressure amplitude17.2 Lens maker's formula 17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch18. Dispersion318. 1 Pure spectrum and dispersive10. Nature and propagation of light	17. Lenses	3	9. Acoustic phenomena	5
17.2 Lens maker's formula9.2 Characteristics of sound: Intensity; loudness, quality and pitch17.3 Power of a lens9.2 Characteristics of sound: Intensity; loudness, quality and pitch9.3 Doppler's effect.9.3 Doppler's effect.18. Dispersion318.1 Pure spectrum and dispersive10. Nature and propagation of light	17.1 Spherical lenses, angular magnification		9.1 Sound waves: Pressure amplitude	
17.3 Power of a lens Intensity; loudness, quality and pitch 9.3 Doppler's effect. 18. Dispersion 3 18.1 Pure spectrum and dispersive 10. Nature and propagation of light	17.2 Lens maker's formula		9.2 Characteristics of sound:	
18. Dispersion 3 10. Nature and propagation of light 3	17.3 Power of a lens		Intensity; loudness, quality and pitch	
18. Dispersion310. Nature and propagation of light3			9.3 Doppler's effect.	
	18. Dispersion	3	10. Nature and propagation of light	3

power		10.1 Huygen's principle	
18.2 Chromatic and spherical aberration		10.2 Reflection and Refraction	
18.3 Achromatism and its applications		according to wave theory	
-		11. Interference	2
		11.1 Phenomenon of Interferences: Coherent sources	
		11.2 Young's double slit experiment.	
-		12. Diffraction	3
		12.1 Diffraction from a single slit	
		12.2 Diffraction pattern of image; Diffraction grating	
		12.3 Resolving power of optical instruments.	
_		13. Polarization	3
		13.1 Phenomenon of polarization	
		13.2 Brewster's law; transverse nature of light	
		13.3 Polaroid.	
Content Area:	Electr	icity & Magnetism	
19. Electric Charges	3	14. Electrical circuits	6
19.1 Electric charges		14.1 Kirchhoff's law	
19.2 Charging by induction		14.2 Wheatstone bridge circuit; Meter bridge	
two point charges		14.3 Potentiometer: Comparison of e.m.f., measurement	
charges.		of internal resistances of a cell	
		14.4 Super conductors; Perfect conductors	
		14.5 Conversion of galvanometer into voltmeter and	
		ammeter; Ohmmeter	
		14.6 Joule's law	
20. Electric field	3	15. Thermoelectric effects:	3
20.1 Electric field due to point charges:	-	15.1 Seebeck effect: Thermocouples	-
Field lines		15.2 Peltier effect: Variation of	

20.2 Gauss Law: Electric Flux		thermoelectric e.m.f.	
20.3 Application of Gauss law: Field of a charge sphere, line charge, charged plane conductor		with temperature; Thermopile	
21. Potential, potential difference	4	16. Magnetic field	9
and potential energy 21.1 Potential difference, Potential due to a point, Charge, potential energy, electron volt 21.2 Equipotential lines and surfaces 21.3 Potential gradient		 16.1 Magnetic field lines and magnetic flux; Oersted's experiment 16.2 Force on moving charge; Force on a conductor 16.3 Force and Torque on rectangular coil, Moving coil galvanometer 16.4 Hall effect 16.5 Magnetic field of a moving charge 16.6 Biot and Savart law and its application to (i) a circular coil (ii) a long straight conductor (iii) a long solenoid 16.7 Ampere's law and its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid 16.8 Force between two parallel conductors carrying current- definition of ampere 	
22. Capacitor	7	17. Magnetic properties of	5
22.1 Capacitance and capacitor		materials:	
22.2 Parallel plate capacitor		17.1 Magnetic field lines and magnetic flux	
22.3 Combination of capacitors 22.4 Energy of charged capacitor		17.2 Flux density in magnetic material; Relative	
22.5 Effect of a dielectric Polarization		permeability; Susceptibility	
and displacement.		17.3 Hysteresis	
		17.4 Dia,-para- and ferro-magnetic	

		materials.	
23. DC Circuits		18. Electromagnetic Induction:	6
23.1 Electric Currents; Drift velocity and its relation with current		18.1 Faraday's laws; Induced electric fields	
23.2 Ohm's law; Electrical Resistance; Resistivity; Conductivity		18.2 Lenz's law, Motional electromotive force	
23.3 Current-voltage relations; Ohmic		18.3 A.C. generators; Eddy currents	
and Non-Ohmic resistance		18.4 Self-inductance and mutual	
23.4 Resistances in series and parallel,		inductance	
23.5 Potential divider		18.5 Energy stored in an inductor	
23.6 Electromotive force of a source, internal resistance		18.6 Transformer.	
23.7 Work and power in electrical circuits			
-		19. Alternating Currents	6
		19.1 Peak and rms value of AC current and voltage	
		19.2 AC through a resistor, a capacitor and an inductor	
		19.3 Phasor diagram	
		19.4 Series circuits containing combination of	
		resistance, capacitance and inductance	
		19.5 Series resonance, quality factor	
		19.6 Power in AC circuits: power factor	
Content A	rea : N	Iodern Physics	
24. Nuclear physics	6	20. Electrons	4
24.1 Nucleus: Discovery of nucleus	-	20.1 Milikan's oil drop experiment,	-
24.2 Nuclear density; Mass number; Atomic number		20.2 Motion of electron beam in electric and magnetic	
24.3 Atomic mass; Isotopes		fields	
24.4 Einstein's mass-energy relation		20.3 Thomson's experiment to	
24.5 Mass Defect, packing fraction, BE per nucleon		determine specific charge of electrons	
24.6 Creation and annihilation			

24.7 Nuclear fission and fusion, energy released			
 25. Solids 25.1 Energy bands in solids (qualitative ideas) 	3	21. Photons 21.1 Quantum nature of radiation	3
 25.2 Difference between metals, insulators and semi-conductors using band theory 25.3 Intrinsic and extrinsic semi- 		21.2 Einstein's photoelectric equation; Stopping potential	
conductors		constant	
26. Recent Trends in physics	6	22. Semiconductor devices	6
26.1 Particle physics: Particles and antiparticles, Quarks (baryons and meson) and leptons (neutrinos)		22.1 P-N Junction22.2 Semiconductor diode: Characteristics in forward	
26.2 Universe: Big Bang and Hubble		22.3 Full wave rectification	
Dark matter, Black Hole and gravitational wave		22.4 Logic gates; NOT, OR, AND, NAND and NOR.	
-		23. Quantization of energy	8
-		23. Quantization of energy23.1 Bohr's theory of hydrogen atom	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 	8
		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 	8
		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 	8
		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 23.6 X-rays: Nature and production; uses 	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 23.6 X-rays: Nature and production; uses 23.7 X-rays diffraction, Bragg's law. 	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 23.6 X-rays: Nature and production; uses 23.7 X-rays diffraction, Bragg's law. 24. Radioactivity and nuclear reaction 	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 23.6 X-rays: Nature and production; uses 23.7 X-rays diffraction, Bragg's law. 24. Radioactivity and nuclear reaction 24.1 Alpha-particles; Beta-particles, Gamma rays 	8
-		 23. Quantization of energy 23.1 Bohr's theory of hydrogen atom 23.2 Spectral series; Excitation and ionization potentials 23.3 Energy level; Emission and absorption spectra 23.4 De Broglie Theory; Duality 23.5 Uncertainly principle 23.6 X-rays: Nature and production; uses 23.7 X-rays diffraction, Bragg's law. 24. Radioactivity and nuclear reaction 24.1 Alpha-particles; Beta-particles, Gamma rays 24.2 Laws of radioactive disintegration 	8

		constant	
		24.4 Geiger-Muller Tube	
		24.5 Carbon dating	
		24.6 Medical use of nuclear radiation and possible health hazard.	
-		25. Recent trends in physics	6
		Seismology:	
		25.1 Surface waves: Rayleigh and Love waves	
		Internal waves: S and P-waves	
		Wave patterns of Gorkha Earthquake 2015	
		25.2 Gravitational Wave	
		Nanotechnology	
		Higgs Boson	
	128		128

5. Practical Courses

[32 Hours]

The practical work that students do during their course is aimed at providing them learning opportunities to accomplish competency number 2 and 3 of the syllabus as well as reinforcing their learning of the theoretical subject content. This part of the syllabus focuses more on skill building than knowledge building. Students must be aware of the importance of precision, accuracy, significant figures, range and errors while collecting, processing, analyzing and communicating data. Likewise, graphical method of analysis and drawing conclusion should be encouraged wherever possible.

Students should

- 1. learn to use metre rule for measuring length, Vernier-calipers for measuring small thicknesses, internal and external diameters of cylindrical objects and depths of holes, spherometer for measuring radius of curvature of spherical surfaces and micrometer screw-gauge for measuring diameter of small spherical or cylindrical objects and very small thicknesses, traveling microscope with Vernier scale for measuring small distances, top-pan balance for measuring small masses, stop watch for measuring time interval, laboratory thermometer for measuring temperature, protractor for measuring angle), ammeter and milli-ammeter for measuring electric current and voltmeter for measuring electric potential difference.
- 2. learn to measure precisely up to the least count of the measuring instrument-

metre rule -0.001 m or 1 mm

Vernier calipers - 0.1 mm

Spherometer - 0.01 mm micrometer screw gauge - 0.01 mm stop watch - 0.01s laboratory thermometer - 0.5°C protractor - 1°

- 3. learn to repeat readings and take the average value
- 4. learn to draw a standard table, with appropriate heading and unit for every column for storing data
- 5. learn to plot a graph using standard format, draw suitable trend lines, determine gradient, intercepts and area and use them to draw appropriate conclusion
- 6. learn to estimate and handle uncertainties.

In each academic year, students should perform 10 experiments, either listed below or designed by teacher, so that no more than three experiments come from the same unit of this syllabus.

a) Practical Activities for Grade 11

I. Mechanics

- 1. Verify the law of moments by graphically analyzing the relation between clockwise moment and anticlockwise moment on a half metre rule suspended at the cerntre by a string.
- 2. Determination of the coefficient of friction for the two surfaces by graphically analyzing how minimum force needed to set a trolley resting on plan horizontal surface to motion varies with its mass.
- 3. Determination of young modulus of elasticity of the material of a given wire by graphically analyzing the variation of tensile force with respect to extension produced by it.

II. Heat

- 4. Use of Pullinger's apparatus for the Determination of the linear expansivity of a rod.
- 5. Use of Regnault's apparatus to determination of the specific heat capacity of a solid by the method of mixture.
- 6. Determination of the thermal conductivity of a good conductor by Searle's method.

III. Geometrical Optics

- 7. Use of rectangular glass slab to determine the thickness of the slab by graphically analyzing how lateral shift varies with the angle of incidence.
- 8. Use of Travelling Microscope for the determination of the refractive index of glass slab by graphically analyzing how apparent depth varies with the real depth for glass plates of different thicknesses.
- 9. Determination of the focal length of a concave mirror by graphically analyzing the variation of image distance with respect to object distance.

IV. Current electricity

- 10. Verification of Ohm's law and determination of resistance of a thin-film resistor by graphical analysis of variation of electric current in the resistor with respect to potential difference across it.
- 11. Determination of resistivity of a metal wire by graphical analysis of variation of electric current through a metal wire against its length.
- 1. Investigation of I-V characteristics of a heating coil by graphically analyzing the variation of electric current though a light bulb with respect to the potential difference across it.

b) Sample project works for grade 11

- 1. Study the variation in the range of a jet of water with angle of projection
- 2. Study the factors affecting the rate of loss of heat of a liquid
- 3. Study the nature and size of the image formed by a convex lens using a candle and a screen.
- 4. Study of uses of alternative energy sources in Nepal
- 5. Study of energy consumption patterns in the neighborhood.
- 6. Study of study of electricity consumption pattern in the neighborhood.
- 7. Study of application of laws and principle of physics in any indigenous technology.
- 8. Verification of the laws of solid friction.
- 9. Study the temperature dependence of refractive index of different liquids using a hollow prism and laser beam.
- 10. Study the frequency dependence of refractive index of glass using a glass prism and white light beam.

c) Some examples of innovative works for grade 11

- 1. Construct a hygrometer using dry and wet bulb thermometers and use it to measure relative humidity of a given place.
- 2. Design and construct a system to demonstrate the phenomenon of total internal reflection (TIR) of a laser beam through a jet of water.
- 3. Construct a digital Newton meter using the concept of potential divider.

d) Practical Activities for Grade 12

I. Mechanics

- 1. Use of Simple pendulum for the determination of the value of 'g' in the laboratory by graphically analyzing the variation of period of oscillations with length of the pendulum.
- 2. Determination of the surface tension of water by capillary tube method by graphically analyzing the variation of by graphically analyzing the variation of height of the liquid against the diameter of capillary tube for five capillaries of different diameters dipped in water simultaneously.

3. Determination of the coefficient of viscosity of liquid by Stoke's method by graphically analyzing the variation of time taken for six metal balls of different diameters to travel the same distance in the given liquid with respect to their diameters.

II. Wave and Optics

- 4. Determination of the wavelength of He-Ne laser light by passing a plane diffraction grating.
- 5. Determination of the frequency of A.C. Mains using sonometer and graphically analyzing the variation of the ratio of resonating lengths with respect to the frequency of tuning fork using tuning forks of different frequencies.
- 6. Determination of velocity of sound in air at NTP using resonance tube.

III. Electricity and magnetism

7. Use of potentiometer for the

- a) Comparison of emf's of two cells
- b) Determination of the internal resistance of a cell
- 8. Study the variation or resistance of a thermistor with temperature.
 - 1. Use of deflection magnetometer to determination of the pole strength and magnetic moment of a bar magnet
 - 2. Determine the magnetic field strength of a bar magnet stuck on table by graphically analyzing the period of torsional motion of a freely suspended bar magnet and its distance from the near pole of the fixed magnet along its long axis.

IV. Modern Physics

11. Study the I-V characteristics of a semiconductor diode.

e) Sample project works for grade 12

- 1. Study the traffic noise level in your town using a sound pressure level (SPL) meter.
- 2. Design and construct a step-up transformer.
- 3. Construct a simple device to measure angle of contact of a liquid with a solid surface and also calculate the surface free energy of some hydrophobic and hydrophilic surfaces.
- 4. Calculate the surface free energy of some hydrophobic and hydrophilic surfaces.
- 5. Construct a simple DC motor using a disk type magnet and a battery.
- 6. Construct a model of AC generator/dynamo.
- 7. Construct a current balance to measure magnetic flux density of a U-shaped magnet.
- 8. Construction of a step down transformer attached with a full wave rectifier made from semiconductor diodes.

f) Some examples of innovative works for grade 12

1. Construct a thermocouple thermometer and use it to investigate how temperature of a Bunsen burner flame changes with the height of the flame from the top of the burner.

- 2. Study of the status of hydroelectricity in Nepal.
- 3. Study of application of laws and principle of physics in any indigenous technology.
- 4. Verify Joule' law.
- 5. Investigation on Peltier effect.
- 6. History of space exploration
- 7. Study on history of nuclear power in Asia

6. Learning Facilitation Method and Process

Students should be facilitated to learn rather than just accumulation of information. Teacher plays vital role for delivering subject matters although others' role is also important. Student centered teaching-learning process is highly emphasized. Students are supposed to adopt multiple pathway of learning, such as online search, field visit, library work, laboratory work, individual and group work, research work etc. with the support of teacher. Self-study by students is highly encouraged and learning should not be confined to the scope of curriculum. Teacher should keep in mind intra and inter-disciplinary approach to teaching and learning, as opposed to compartmentalization of knowledge. Supportive role of parents/guardians in creating conducive environment for promoting the spirit of inquiry and creativity in students' learning i anticipated.

During the delivery process of science teaching in grade 11 and 12, basically following three approaches will be adopted;

a) Conceptual/Theoretical Approach

Possible theoretical methods of delivery may include the following;

- lecture
- interaction
- question answer
- demonstrations
- ICT based instructions
- cooperative learning
- group discussions (satellite learning group, peer group, small and large group)

- debate
- seminar presentation
- Journal publishing
- daily assignment

b) Practical/Application/Experimental approach

Practical work is the integral part of the learning science. The process of lab based practical work comprises as;

- familiarity with objective of practical work
- familiarity with materials, chemicals, apparatus
- familiarity with lab process (safety, working modality etc.)
- conduction of practical work (systematically following the given instruction)
- analysis, interpretation and drawing conclusion

c) Project work Approach

Project work is an integral part of the science learning. Students should be involved in project work to foster self-learning of students in the both theoretical and practical contents. Students will complete project work to have practical idea through learning by doing approach and able to connect the theory into the real world context. It is regarded as method/ process of learning rather than content itself. So use of project work method to facilitate any appropriate contents of this curriculum is highly encouraged.

In this approach student will conduct at least one **research work, or an innovative work** under the guidance of teacher, using the knowledge and skills learnt. It could include any of the followings;

- (a) Mini research
- (b) Survey
- (c) Model construction
- (d) Paper based work
- (e) study of ethno-science

General process of research work embraces the following steps;

- Understanding the objective of the research
- Planning and designing
- Collecting information
- analysis and interpretation
- Reporting /communicating (presentation, via visual aids, written report, graphical etc.)

General process of innovative work embraces the following steps;

- identification of innovative task (either assigned by teacher or proposed by student)
- planning
- performing the task

- presentation of the work
- Record keeping of the work

Students are free to choose any topic listed in this curriculum or a topic suggested by teacher provided that it is within the theoretical contents of the Curriculum. However, repetition of topic should be discouraged.

Learning process matrix

Knowledge and understanding	Scientific skills and process	Values, attitudes and application to daily life	
• Scientific phenomenon, facts, definition, principles, theory, concepts and new discoveries	Basic and integrated scientific process skills <u>Process</u>	 Responsible Spending time for investigation 	
 Scientific vocabulary, glossary and terminology Scientific tools, devises, instruments apparatus 	InvestigationCreative thinkingproblem solving		
 Techniques of uses of scientific instruments with safety 			
• Scientific and technological applications			

Basic Science Process Skills includes,

- 1. Observing: using senses to gather information about an object or event. It is description of what was actually perceived.
- 2. Measuring: comparing unknown physical quantity with known quantity (standard unit) of same type.
- 3. Inferring: formulating assumptions or possible explanations based upon observations.
- 4. Classifying: grouping or ordering objects or events into categories based upon characteristics or defined criteria.
- 5. Predicting: guessing the most likely outcome of a future event based upon a pattern of evidence.
- 6. Communicating: using words, symbols, or graphics to describe an object, action or event.

Integrated Science Process Skills includes,

- 1. Formulating hypotheses: determination of the proposed solutions or expected outcomes for experiments. These proposed solutions to a problem must be testable.
- 2. Identifying of variables: Identification of the changeable factors (independent and dependent variables) that can affect an experiment.
- 3. Defining variables operationally: explaining how to measure a variable in an experiment.

- 4. Describing relationships between variables: explaining relationships between variables in an experiment such as between the independent and dependent variables.
- 5. Designing investigations: designing an experiment by identifying materials and describing appropriate steps in a procedure to test a hypothesis.
- 6. Experimenting: carrying out an experiment by carefully following directions of the procedure so the results can be verified by repeating the procedure several times.
- 7. Acquiring data: collecting qualitative and quantitative data as observations and measurements.
- 8. Organizing data in tables and graphs: presenting collected data in tables and graphs.
- 9. Analyzing investigations and their data: interpreting data, identifying errors, evaluating the hypothesis, formulating conclusions, and recommending further testing where necessary.
- 10. Understanding cause and effect relationships: understanding what caused what to happen and why.
- 11. Formulating models: recognizing patterns in data and making comparisons to familiar objects or ideas.

7. Student Assessment

Evaluation is an integral part of learning process. Both formative and summative modes of evaluation are emphasized. Formative evaluation will be conducted so as to provide regular feedback for students, teachers and parents/guardians about how student learning is. Class tests, unit tests, oral question-answer, home assignment etc. are some ways of formative evaluation.

There will be separate evaluation of theoretical and practical learning. Summative evaluation embraces theoretical examination, practical examination and evaluation of research work or innovative work.

(a) Internal Evaluation

Out of 100 full marks Internal evaluation covers 25 marks. Internal evaluation consists of Practical work (16 marks), (b) Marks from trimester examinations (6 marks), and (c) Classroom participation (3 marks)

• Practical Activities

Practical work and project work should be based on list of activities mentioned in this curriculum or designed by the teacher. Mark distribution for practical work and project work will be as follows:

S. N.	Criteria	Elaboration of criteria	Marks
1.	Laboratory	Correctness of apparatus setup/preparation	2
	experiment	Observation/Experimentation	2
		Tabulation	1
		Data processing and Analysis	1
		Conclusion (Value of constants or prediction with	1

		justification)	
		Handling of errors/precaution	1
2.	Viva-voce	Understanding of objective of the experiment	1
		Skills of the handling of apparatus in use	1
		Overall impression	1
3.	Practical work records and attendance	Records (number and quality)	2
4	Project work	Reports (background, objective, methodology, finding, conclusion	2
		Presentation	1
		Total	16

Note: (i) Practical examination will be conducted in the presence of internal and external supervisors. Evaluation of laboratory experiment will focus both the product of work and skills competencies of student in using apparatus.

(ii) Project work assessment is the internal assessment of reports and presentation of their project works either individually or group basis. In case of group presentation, every member of the group should submit a short reflection on the presented report in their own language. Records of project works must be attested by external supervisor.

• Marks from trimester examinations

Total of 6 marks; 3 marks from each trimester.

• Classroom participation (3 marks)

Classroom participation includes attendance (1) and participation in learning (2).

(b) External Evaluation

Out of 100 marks theoretical evaluation covers 75 marks. The tool for external evaluation of theoretical learning will be a written examination. Questions for the external examination will be based on the specification grid developed by Curriculum Development Centre. Examination question paper will be developed using various levels of revised Bloom's taxonomy including remembering level, understanding level, application level and higher ability (such as analyzing, evaluating, creating).